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Abstract

We consider a Nash equilibrium between two high-frequency traders in a simple mar-
ket impact model with transient price impact and additional quadratic transaction costs.
Extending a result by Schöneborn (2008), we prove existence and uniqueness of the Nash
equilibrium and show that for small transaction costs the high-frequency traders engage in a
“hot-potato game”, in which the same asset position is sold back and forth. We then identify
a critical value for the size of the transaction costs above which all oscillations disappear and
strategies become buy-only or sell-only. Numerical simulations show that for both traders
the expected costs can be lower with transaction costs than without. Moreover, the costs
can increase with the trading frequency when there are no transaction costs, but decrease
with the trading frequency when transaction costs are sufficiently high. We argue that these
effects occur due to the need of protection against predatory trading in the regime of low
transaction costs.

Keywords: Hot-potato game, high-frequency trading, Nash equilibrium, transient price impact,
market impact, predatory trading, M -matrix, inverse-positive matrix

1 Introduction

According to the Report [10] by CFTC and SEC on the Flash Crash of May 6, 2010, the events
that lead to the Flash Crash included a large sell order of E-Mini S&P 500 contracts:

. . . a large Fundamental Seller (. . . ) initiated a program to sell a total of 75,000 E-
Mini contracts (valued at approximately $4.1 billion). . . . [On another] occasion it took
more than 5 hours for this large trader to execute the first 75,000 contracts of a large
sell program. However, on May 6, when markets were already under stress, the Sell
Algorithm chosen by the large Fundamental Seller to only target trading volume, and
not price nor time, executed the sell program extremely rapidly in just 20 minutes.

∗The authors acknowledge support by Deutsche Forschungsgemeinschaft through Research Grant SCHI 500/3-1
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The report [10] furthermore suggests that a “hot-potato game” between high-frequency traders
(HFTs) created artificial trading volume that at least contributed to the acceleration of the Fun-
damental Seller’s trading algorithm:

. . . HFTs began to quickly buy and then resell contracts to each other—generating a
“hot-potato” volume effect as the same positions were rapidly passed back and forth.
Between 2:45:13 and 2:45:27, HFTs traded over 27,000 contracts, which accounted for
about 49 percent of the total trading volume, while buying only about 200 additional
contracts net.

See also Kirilenko, Kyle, Samadi, and Tuzun [15] and Easley, López da Prado, and O’Hara [11]
for additional background.

Schöneborn [21] observed that the equilibrium strategies of two competing economic agents,
who trade sufficiently fast in a simple market impact model with exponential decay of price impact,
can exhibit strong oscillations. These oscillations have a striking similarity with the “hot-potato
game” mentioned in [10] and [15]. In each trading period, one agent sells a large asset position
to the other agent and buys a similar position back in the next period. The intuitive reason for
this hot-potato game is to protect against possible predatory trading by the other agent. Here,
predatory trading refers to the exploitation of the drift generated by the price impact of another
agent. For instance, if the other agent is selling assets over a certain time interval, predatory
trading would consist in shortening the asset at the beginning of the time interval and buying back
when prices have depreciated through the sale of the other agent. Such strategies are “predatory”
in the sense that their price impact decreases the revenues of the other agent and thus generate
profit at the other agent’s expense.

In this paper, we continue the investigation of the “hot-potato game”. Our first contribution is
to extend the result of Schöneborn [21] by identifying a unique Nash equilibrium for two competing
agents within a larger class of adaptive trading strategies, for general decay kernels, and by giving
an explicit formula for the equilibrium strategies. This explicit formula will be the starting point
for our further mathematical and numerical analysis of the Nash equilibrium. Another new feature
of our approach is the addition of quadratic transaction costs, which can be thought of temporary
price impact in the sense of [6, 4] or as a transaction tax. The main goal of our paper is to study
the impact of these additional transaction costs on equilibrium strategies. Theorem 2.8, our main
result, precisely identifies a critical threshold θ∗ for the size θ of these transaction costs at which
all oscillations disappear. That is, for transactions θ ≥ θ∗ certain “fundamental” equilibrium
strategies consist exclusive of all buy trades or of all sell trades. For θ < θ∗, the “fundamental”
equilibrium strategies will contain both buy and sell trades when the decay of price impact in
between two trades is sufficiently small.

In addition, numerical simulations will exhibit some rather striking properties of equilibrium
strategies. They reveal, for instance, that the expected costs of both agents can be a decreasing
function of θ ∈ [0, θ0] when trading speed is sufficiently high. As a result, both agents can carry out
their respective trades at a lower cost when there are transaction costs, compared to the situation
without transaction costs. Even more interesting is the behavior of the costs as a function of the
trading frequency. We will see that, for θ = θ∗, a higher trading speed can decrease expected
trading costs, whereas the costs typically increase for sufficiently small θ. In particular the latter
effect is surprising, because at first glance a higher trading frequency suggests that one has greater
flexibility in the choice of a strategy and hence can become more cost efficient. So why are the
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costs then increasing in N? We will argue that the intuitive reason for this effect is that a higher
trading frequency results in greater possibilities for predatory trading by the competitor and thus
requires taking additional measures of protection against predatory trading.

This paper builds on several research developments in the existing literature. First, there
are several papers on predatory trading such as Brunnermeier and Pedersen [8], Carlin et al. [9],
Schöneborn and Schied [22], and the authors [20] dealing with Nash equilibria for several agents
that are active in a market model with temporary and permanent price impact. A discrete-
time market impact game with asymmetric information was analyzed by Moallemi et al. [17]. In
contrast to these previous studies, the transient price impact model we use here goes back to
Bouchaud et al. [7] and Obizhaeva and Wang [18]. It was further developed in [1, 2, 12, 3, 19],
to mention only a few related papers. As first observed in [21], the qualitative features of Nash
equilibria for transient price impact differ dramatically from those obtained in [9, 22, 20] for an
Almgren–Chriss setting. We refer to [13, 16] for recent surveys on the price impact literature and
extended bibliographies.

The paper is organized as follows. In Section 2.1 we explain our modeling framework. The
existence and uniqueness theorem for Nash equilibria is stated in Section 2.2. In Section 2.3 we
analyze the oscillatory behavior of equilibrium strategies. Here we will also state our main result,
Theorem 2.8, on the critical threshold for the disappearance of oscillations. Our numerical results
and their interpretation are presented in Section 2.3 and Section 2.4. Particularly, Section 2.4
contains the simulations for the behavior of the costs as a function of transaction costs and of
trading frequency in the cases with and without transaction costs. In Section 2.5 we will analyze
the asymptotic behavior of certain equilibrium strategies when the trading frequency tends to
infinity. The proofs of our results are given in Section 3. We conclude in Section 4.

2 Statement of results

2.1 Modeling framework

We consider two financial agents, X and Y , who are active in a market impact model for one risky
asset. Market impact will be transient and modeled as in [3]; see also [7, 18, 2, 12, 19] for closely
related or earlier versions of this model, which is sometimes called a propagator model. When
none of the two agents is active, asset prices are described by a right-continuous martingale1

S0 = (S0
t )t≥0 on a filtered probability space (Ω, (Ft)t≥0,F ,P), for which F0 is P-trivial. The

process S0 is often called the unaffected price process. Trading takes place at the discrete trading
times of a time grid T = {t0, t1, . . . , tN}, where 0 = t0 < t1 < · · · < tN = T . Both agents are
assumed to use trading strategies that are admissible in the following sense.

Definition 2.1. Suppose that a time grid T = {t0, t1, . . . , tN} is given. An admissible trading
strategy for T and Z0 ∈ R is a vector ζ = (ζ0, . . . , ζN) of random variables such that

(a) each ζi is Fti-measurable and bounded, and

(b) Z0 = ζ0 + · · ·+ ζN P-a.s.

1The martingale assumption is natural from an economic point of view, because we are interested here in
high-frequency trading over short time intervals [0, T ]. See also the discussion in [3] for additional arguments.
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The set of all admissible strategies for given T and Z0 is denoted by X (Z0,T).

For ζ ∈ X (Z0,T), the value of ζi is taken as the number of shares traded at time ti, with
a positive sign indicating a sell order and a negative sign indicating a purchase. Thus, the re-
quirement (b) in the preceding definition can be interpreted by saying that Z0 is the inventory of
the agent at time 0 = t0 and that by time tN = T (e.g., the end of the trading day) the agent
must have a zero inventory. The assumption that each ζi is bounded can be made without loss of
generality from an economic point of view.

When the two agents X and Y apply respective strategies ξ ∈ X (X0,T) and η ∈ X (Y0,T),
the asset price is given by

Sξ,η
t = S0

t −
∑
tk<t

G(t− tk)(ξk + ηk), (1)

where G : R+ → R+ is a function called the decay kernel. Thus, at each time tk ∈ T, the combined
trading activities of the two agents move the current price by the amount −G(0)(ξk + ηk). At a
later time t > tk, this price impact will have changed to −G(t− tk)(ξk + ηk). From an economic
point of view it would be reasonable to assume that G is nonincreasing, but this assumption is
not essential for our results to hold mathematically. But we do assume throughout this paper
that the function t 7→ G(|t|) is strictly positive definite in the sense of Bochner: For all n ∈ N,
t1, . . . , tn ∈ R, and x1, . . . , xn ∈ R we have

n∑
i,j=1

xixjG(|ti − tj|) ≥ 0, with equality if and only if x1 = · · · = xn = 0. (2)

As observed in [3], this assumption rules out the existence of price manipulation strategies in the
sense of Huberman and Stanzl [14]. It is satisfied as soon as G is convex, nonincreasing, and
nonconstant; see, e.g., [3, Proposition 2] for a proof.

Let us now discuss the definition of the liquidation costs incurred by each agent. When only
one agent, say X, places a nonzero order at time tk, then we are in the situation of [3] and the
price is moved linearly from Sξ,η

tk
to Sξ,η

tk+
:= Sξ,η

tk
−G(0)ξk. The order ξk is therefore executed at

the average price 1
2
(Sξ,η

tk+
+ Sξ,η

tk
) and consequently incurs the following expenses:

−1

2

(
Sξ,η
tk+

+ Sξ,η
tk

)
ξk =

G(0)

2
ξ2k − S

ξ,η
tk
ξk.

Suppose now that the order ηk of agent Y is executed immediately after the order ξk. Then the
price is moved linearly from Sξ,η

tk+
to Sξ,η

tk+
−G(0)ηk, and the order of agent Y incurs the expenses

−1

2

(
Sξ,η
tk+

+ Sξ,η
tk+
−G(0)ηk

)
ηk =

G(0)

2
η2k − S

ξ,η
tk
ηk +G(0)ξkηk.

So greater latency results in the additional cost term G(0)ξkηk for agent Y . Clearly, this term
would appear in the expenses of agent X when the roles of X and Y are reversed. In the sequel,
we are going to assume that none of the two agents has an advantage in latency over the other.
Therefore, if both agents place nonzero orders at time tk, execution priority is given to that agent
who wins an independent coin toss.

In addition to the liquidation costs motivated above, we will also impose that each trade ζk
incurs quadratic transaction costs of the form θζ2k , where θ is a nonnegative parameter.
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Definition 2.2. Suppose that T = {t0, t1, . . . , tN}, X0 and Y0 are given. Let furthermore
(εi)i=0,1,... be an i.i.d. sequence of Bernoulli (1

2
)-distributed random variables that are indepen-

dent of σ(
⋃
t≥0 Ft). Then the costs of ξ ∈X (X0,T) given η ∈X (Y0,T) are defined as

CT(ξ|η) = X0S
0
0 +

N∑
k=0

(G(0)

2
ξ2k − S

ξ,η
tk
ξk + εkG(0)ξkηk + θξ2k

)
(3)

and the costs of η given ξ are

CT(η|ξ) = Y0S
0
0 +

N∑
k=0

(G(0)

2
η2k − S

ξ,η
tk
ηk + (1− εk)G(0)ξkηk + θη2k

)
.

The term X0S
0
0 corresponds to the book value of the position X0 at time t = 0. If the

position X0 could be liquidated at book value, one would incur the expenses −X0S
0
0 . Therefore,

the liquidation costs as defined in (3) are the difference of the actual accumulated expenses, as
represented by the sum on the right-hand side of (3), and the expenses for liquidation at book
value. The following two remarks provide further comments on our modeling assumptions.

Remark 2.3. The market impact model we are using here has often been linked to the placement
of market orders in a block-shaped limit order book, and a bid-ask spread is sometimes added
to the model so as to make this interpretation more feasible [18, 1]. For a strategy consisting
exclusively of market orders, the bid-ask spread will lead to an additional fee that should be
reflected in the corresponding cost functional. In reality, however, most strategies will involve a
variety of different order types and one should think of the costs (3) as the costs averaged over
order types, as is often done in the market impact literature. For instance, while one may have
to pay the spread when placing a market order, one essentially earns it back when a limit order
is executed. Moreover, high-frequency traders often have access to a variety of more exotic order
types, some of which can pay rebates when executed. It is also possible to use crossing networks
or dark pools in which orders are executed at mid price. So, for a setup of high-frequency trading,
taking the bid-ask spread as zero in (1) is probably more realistic than modeling every single order
as a market order and to impose the fees. The existence of hot-potato games in real-world markets,
such as the one quoted from [10] in the Introduction, can be regarded as an empirical justification
of the zero-spread assumption, because such a trading behavior could never be profitable if each
trader had to pay the full spread upon each execution of an order.

Remark 2.4. We admit that we have chosen quadratic transaction costs because this choice makes
our model mathematically tractable. Yet, there are several aspects why quadratic transaction costs
may not be completely implausible from an economic point of view. For instance, these costs can
be regarded as arising from temporary price impact in the spirit of [6, 4], which is also quadratic
in order size. Moreover, these costs can model a transaction tax that is subject to tax progression.
With such a tax, small orders, such as those placed by small investors, are taxed at a lower
rate than large orders, which may be placed with the intention of moving the market. Finally,
quadratic transaction costs differ from proportional transaction costs in a qualitative manner only
when order size tends to zero. As long as the sizes of nonzero orders are bounded away from
zero, as it must necessarily be the case in a model with finitely many trading dates, quadratic
transaction costs can be replaced by a transaction cost function that is linear around the origin
without changing the actual costs of a strategy. It is therefore reasonable to expect a similar
qualitative behavior also for proportional transaction costs.
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2.2 Nash equilibrium

We now consider agents who need to liquidate their current inventory within a given time frame
and who are aiming to minimize the expected costs over admissible strategies. The need for
liquidation can arise due to various reasons. For instance, Easley, López da Prado, and O’Hara
[11] argue that the toxicity of the order flow preceding the Flash Crash of May 6, 2010, has led the
inventory of several high-frequency market makers to grow beyond their risk limits, thus forcing
them to unload this inventory.

When just a single agent is considered, the minimization of the expected execution costs is
a well-studied problem; we refer to [3] for an analysis within our current modeling framework.
Here we are going to investigate the optimal strategies of our two agents, X and Y , under the
assumption that both have full knowledge of the other’s strategy and maximize the expected costs
of their strategies accordingly. In this situation, it is natural to define optimality through the
following notion of a Nash equilibrium.

Definition 2.5. For given time grid T and initial values X0, Y0 ∈ R, a Nash equilibrium is a pair
(ξ∗,η∗) of strategies in X (X0,T)×X (Y0,T) such that

E[ CT(ξ∗|η∗) ] = inf
ξ∈X (X0,T)

E[ CT(ξ|η∗) ] and E[ CT(η∗|ξ∗) ] = inf
η∈X (Y0,T)

E[ CT(η|ξ∗) ].

To state our formula for this Nash equilibrium, we need to introduce the following notation.
For a fixed time grid T = {t0, . . . , tN}, we define the (N + 1)× (N + 1)-matrix Γ by

Γi,j = G(|ti−1 − tj−1|), i, j = 1, . . . , N + 1, (4)

and for θ ≥ 0 we introduce

Γθ := Γ + 2θ Id. (5)

We furthermore define the lower triangular matrix Γ̃ by

Γ̃ij =


Γij if i > j,
1
2
G(0) if i = j,

0 otherwise.

(6)

We will write 1 for the vector (1, . . . , 1)> ∈ RN+1. A strategy ζ = (ζ0, . . . , ζN) ∈ X (Z0,T) will
be identified with the (N + 1)-dimensional random vector (ζ0, . . . , ζN)>. Conversely, any vector
z = (z1, . . . , zN+1)

> ∈ RN+1 can be identified with the deterministic strategy ζ with ζk = zk+1.
We also define the two vectors

v =
1

1>(Γθ + Γ̃)−11
(Γθ + Γ̃)−11

w =
1

1>(Γθ − Γ̃)−11
(Γθ − Γ̃)−11.

(7)

It will be shown in Lemma 3.2 below that the matrices Γθ + Γ̃ and Γθ − Γ̃ are indeed invertible
and that the denominators in (7) are strictly positive under our assumption (2) that G(| · |) is
strictly positive definite. Recall that we assume (2) throughout this paper.
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In the case G(t) = γ + λe−ρt for constants γ ≥ 0 and λ, ρ > 0, the existence of a unique Nash
equilibrium in the class of deterministic strategies was established in Theorem 9.1 of [21]. Our
subsequent Theorem 2.6 extends this result in a number of ways: we allow for general positive
definite decay kernels, include transaction costs, give an explicit form of the deterministic Nash
equilibrium, and show that this Nash equilibrium is also the unique Nash equilibrium in the class
of adapted strategies. Our explicit formula for the equilibrium strategies will be the starting point
for our further mathematical and numerical analysis of the Nash equilibrium. Also our proof is
different from the one in [21], which works only for the specific decay kernel G(t) = λe−ρt + γ.

Theorem 2.6. For any time grid T and initial values X0, Y0 ∈ R, there exists a unique Nash
equilibrium (ξ∗,η∗) ∈ X (X0,T)×X (Y0,T). The optimal strategies ξ∗ and η∗ are deterministic
and given by

ξ∗ =
1

2
(X0 + Y0)v +

1

2
(X0 − Y0)w,

η∗ =
1

2
(X0 + Y0)v −

1

2
(X0 − Y0)w.

(8)

The formula (8) shows that the vectors v and w form a basis for all possible equilibrium
strategies. It follows that in analyzing the Nash equilibrium it will be sufficient to study the two
cases ξ∗ = v = η∗ for X0 = 1 = Y0 and ξ∗ = w = −η∗ for X0 = 1 = −Y0.

2.3 The hot-potato game

We now turn toward a qualitative analysis of the equilibrium strategies. Due to the computational
complexity of this task, we will concentrate here on the case of an exponential decay kernel with
additional permanent price impact:

G(t) = λe−ρt + γ for constants λ, ρ > 0 and γ ≥ 0. (9)

It is well known that this class of decay kernels satisfies our assumption (2) (see, e.g., [3, Example
1]).

By means of numerical simulations and the analysis of a particular example, Schöneborn [21,
Section 9.3] observed that the equilibrium strategies may exhibit strong oscillations when θ = 0.
The subsequent proposition implies that for γ = 0 such oscillations will always occur in a Nash
equilibrium with X0 = −Y0 if θ is sufficiently small and the trading frequency is sufficiently high.
Note that this Nash equilibrium is completely determined by the vector w. Throughout this and
the following sections, we will concentrate on equidistant time grids,

TN :=
{kT
N

∣∣∣ k = 0, 1, . . . , N
}
, N ∈ N. (10)

Proposition 2.7. Suppose that G is of the form (9) with γ = 0 and that T > 0 is fixed. Then
there exists N0 ∈ N such that for each N ≥ N0 there exists δ > 0 so that for 0 ≤ θ < δ the entries
of the vector w = (w1, . . . , wN+1) are nonzero and have alternating signs.

We refer to the right-hand panel of Figure 1 for an illustration of the oscillations of the vector
w. As shown in the left-hand panel of the same figure, similar oscillations occur for the vector

7



-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

-0.5

0.0

0.5

Figure 1: Vectors v (left) and w (right) for the equidistant time grid T50, G(t) = e−t, θ = 0, and
T = 1. By (8), (v,v) is the equilibrium for X0 = Y0 = 1, and (w,−w) is the equilibrium for
X0 = −Y0 = 1. Yet, some individual components of both v and w exceed in either direction 60%
of the sizes of the initial positions X0 and Y0.

v and hence for equilibria with arbitrary initial conditions. The mathematical analysis for v,
however, is much harder than for w, and at this time we are not able to prove a result that could
be an analogue of Proposition 2.7 for the vector v. The existence of oscillations of w and v is also
not limited to exponential decay kernels as can be seen from numerical experiments; see Figure 2
for an illustration. We refer to Remark 2.9 for a possible financial interpretation of the oscillations
arising in the hot-potato game. Already here we point out that for a single financial agent optimal
strategies will always be buy-only or sell-only for the decay kernels used in Figures 1 and 2 (see
[3, Theorem 1]). Therefore, the oscillations in our two-agent setting that are observed in these
figures must necessarily result from the interaction of both agents.

We can now turn to presenting the main mathematical result of this paper. It is concerned with
the cease of oscillations of both v and w when the parameter θ increases. Intuitively it is clear
that increased transaction costs will penalize oscillating strategies and thus lead to a smoothing
of the equilibrium strategies. As a matter of fact, one can see in Figure 3 that for θ = 2 all
oscillations have disappeared so that equilibrium strategies are then buy-only or sell-only. One
can therefore wonder whether between θ = 0 and θ = 2 there might be a critical value θ∗ at
which all oscillations of v and w disappear but below which oscillations are present. That is, for
θ ≥ θ∗ all equilibrium strategies should be either buy-only or sell-only, while for θ < θ∗ equilibrium
strategies should contain both buy and sell trades (at least for certain values of N and ρ). The
following theorem confirms that such a critical value θ∗ does indeed exist. We can even determine
its precise value.

Theorem 2.8. Suppose that G is as in (9) and TN denotes the equidistant time grid (10). Then
the following conditions are equivalent.

(a) For every N ∈ N and ρ > 0, all components of v are nonnegative.

(b) For every N ∈ N and ρ > 0, all components of w are nonnegative.

(c) θ ≥ θ∗ = (λ+ γ)/4.
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Figure 2: Vectors v (left) and w (right) for price impact decaying according to the power-law
G(t) = (1 + t)−0.5, as suggested, e.g., in [12]. The remaining parameters are as in Figure 1. Note
the qualitative similarity to the corresponding strategies for exponential decay of price impact in
Figure 1.
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Figure 3: Vectors v (left) and w (right) for the equidistant time grid T50, G(t) = e−t, θ = 2, and
T = 1.
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Remark 2.9. In this remark we will discuss a possible financial explanation for the oscillations
of equilibrium strategies observed for small values of θ. As mentioned above, the source for these
oscillations must necessarily lie in the interaction between the two agents. As observed in previous
studies on multi-agent equilibria in price impact models such as [8, 9, 22], the dominant form of
interaction between two players is predatory trading, which consists in the exploitation of price
impact generated by another agent. Such strategies are “predatory” in the sense that they generate
profit by simultaneously decreasing the other agent’s revenues. Since predators prey on the drift
created by the price impact of a large trade, protection against predatory trading requires the
erasion of previously created price impact. Under transient price impact, the price impact of an
earlier trade, say ζ0, can be erased by placing an order ζ1 of the opposite side. For instance, taking
ζ1 := −ζ0G(t1 − t0) will completely eliminate the price impact of ζ0 while the combined trades
execute a total of ξ0(1−G(t1− t0)) shares. In this sense, oscillating strategies can be understood
as a protection against predatory trading by opponents (see also [21, p.150]).

Remark 2.10. Alfonsi et al. [3] discovered oscillations for the trade execution strategies of a
single trader under transient price impact when price impact does not decay as a convex function
of time. These oscillations, however, result from an attempt to exploit the delay in market response
to a large trade, and they disappear when price impact decays as a convex function of time [3,
Theorem 1]. In particular, when there is just one agent active and G is convex, nonincreasing,
and nonconstant (which is, e.g., the case under assumption (9)), then for each time grid T there
exists a unique optimal strategy, which is either buy-only or sell-only. When (9) holds and θ = 0,
this strategy is known explicitly; see [1].

2.4 The impact of transaction costs and trading frequency on the
expected costs

Due to our explicit formulas (7) and (8), it is easy to analyze the Nash equilibrium numerically.
These numerical simulations exhibit several striking effects in regards to monotonicity properties
of the expected costs.

In Figure 4 we have plotted the expected costs E[ CTN
(ξ∗|η∗) ] = E[ CTN

(η∗|ξ∗) ] for X0 = Y0,
G(t) = e−t, and T = 1 as a function of the trading frequency, N . The first observation one
probably makes when looking at this plot is the fact that for θ = 0 the expected costs exhibit a
sawtooth-like pattern; they alternate between two increasing trajectories, depending on whether
N is odd or even. These alternations are due to the oscillations of the optimal strategies, which
also alternate with N . As can be seen from the figure, the sawtooth pattern disappears already
for very small values of θ such as for θ = 0.08.

A more interesting observation is the fact that for θ = 0 and θ = 0.08 the expected costs
E[ CT2N

(ξ∗|η∗) ] (or alternatively E[ CT2N+1
(ξ∗|η∗) ]) are increasing in N . This fact is surprising

because a higher trading frequency should normally lead to a larger class of admissible strategies.
As a result, traders have greater flexibility in choosing a strategy and in turn should be able to
pick more cost efficient strategies. So why are the costs then increasing in N? The intuitive
explanation is that a higher trading frequency increases also the possibility for the competitor to
conduct predatory strategies at the expense of the other agent (see Remark 2.9). In reaction, this
other agent needs to take stronger protective measures against predatory trading. As discussed
in Remark 2.9, protection against predatory trading can be obtained by erasing (part of) the
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previously created price impact through placing an order of the opposite side. The result is an
oscillatory strategy, whose expected costs increase with the number of its oscillations.

Still in Figure 4, the expected costs E[ CTN
(ξ∗|η∗) ] for the case θ = θ∗ = 0.25 exhibit a

very different behavior. They no longer alternate in N and are decreasing as a function of the
trading frequency. The intuitive explanation is that transaction costs of size θ∗ = 0.25 discourage
predatory trading to a large extend, so that agents can now benefit from a higher trading frequency
and pick ever more cost-efficient strategies as N increases.

The most surprising observation in Figure 4 is the fact that for sufficiently large N the expected
costs for θ = 0.08 and for θ = θ∗ = 0.25 fall below the expected costs for θ = 0. That is, for
sufficiently large trading frequency, adding transaction costs can decrease the expected costs of all
market participants (recall that for X0 = Y0 both agents have the same optimal strategies and,
hence, the same expected costs). This fact is further illustrated in Figure 5, which exhibits a very
steep initial decrease of the expected costs as a function of θ. After a minimum of the expected
costs is reached at θ ≈ 0.06, there is a slow and steady increase of the costs with an approximate
slope of 0.002.

The key to understanding the behavior of expected equilibrium costs as a function of trad-
ing frequency and transaction costs rests in the interpretation of the oscillations in equilibrium
strategies as a protection against predatory trading by the opponent (see Remark 2.9). Note that
a predatory trading strategy is necessarily a “round trip”, i.e., a strategy with zero inventory at
t = 0 and T = 0 (the strategy of a predatory trader with nonzero initial position would consist
of a superposition of a predatory round trip and a liquidation strategy for the initial position).
It therefore must consist of a buy and a sell component and is hence stronger penalized by an
increase in transaction costs than a buy-only or sell-only strategy. As a result, increasing trans-
action costs leads to an overall reduction of the proportion of predatory trades in equilibrium. In
consequence, both agents in our model can reduce their protection against predatory trading and
therefore use more efficient strategies to carry out their trades. They can thus fully benefit from
higher trading frequencies, which leads to the observed decrease of expected costs as a function
of N if θ is sufficiently large. Moreover, for appropriate values of θ > 0, the benefit of increased
efficiency outweighs the price to be paid in higher transaction costs and so an overall reduction of
costs is achieved.

2.5 Analysis of the high-frequency limit

In the sequel, we analyze the possible convergence of the equilibrium strategies when the trading
frequency tends to infinity. To this end, we consider the equidistant time grids TN as defined in
(10) for varying N ∈ N and write v(N) = (v

(N)
1 , . . . , v

(N)
N+1) and w(N) = (w

(N)
1 , . . . , w

(N)
N+1) for the

vectors in (7) to make the dependence on N explicit. We start with the following proposition,
which analyzes the convergence of the individual components of w(N) when N ↑ ∞. By (8), a
Nash equilibrium with X0 = −Y0 is completely determined by w(N).

Proposition 2.11. Suppose that n is fixed.

(a) When θ = 0, we have

lim
N↑∞

w(2N)
n = (−1)n+1 2a

2ρT + a+ 1
and lim

N↑∞
w(2N+1)
n = (−1)n

2a

2ρT − a+ 1
, (11)

11
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Figure 4: Expected costs E[ CTN
(ξ∗|η∗) ] = E[ CTN

(η∗|ξ∗) ] for various values of θ as a function of
trading frequency, N , with the equidistant time grid TN , T = 1, G(t) = e−t, and X0 = Y0 = 1.
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Figure 5: Expected costs E[ CT501(ξ
∗|η∗) ] = E[ CT501(η

∗|ξ∗) ] as a function of θ. The costs decrease
steeply from the value 0.7567 at θ = 0 until a minimum value of about 0.7397 at θ = 0.06. From
then on there is a moderate and almost linear increase with, e.g., a value of 0.7407 at θ = 0.5.
This increase corresponds to a slope of approximately 0.002. We took the equidistant time grid
T501, initial values X0 = Y0 = 1, and λ = ρ = 1.
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as well as

lim
N↑∞

w
(2N)
2N+1−n = (−1)n

2

2ρT + a+ 1
and lim

N↑∞
w

(2N+1)
2N+2−n = (−1)n

2

2ρT − a+ 1
. (12)

(b) When θ > 0, we have
lim
N↑∞

w(N)
n = 0,

and

lim
N↑∞

w
(N)
N+1−n =

(4θ − λ
4θ + λ

)n 2λ

(ρT + 1)(4θ + λ)
. (13)

The preceding proposition gives further background on the oscillations of equilibrium strategies
in the regime θ < θ∗. In particular, (11) shows that in a Nash equilibrium with X0 = −Y0 and
with θ = 0 the trades of both agents asymptotically oscillate between ±const and that the sign of
each trade also depends on whether N is odd or even. Moreover, (13) implies that, for K ∈ N fixed
and N ↑ ∞, the terminal K trades in an equilibrium strategy asymptotically oscillate between
±const if and only if θ < λ/4.

Now we consider the Nash equilibrium (ξ∗,(N),η∗,(N)) with initial positions X0, Y0 and time
grid TN . We define the asset positions of the two agents via

X
(N)
t := X0 −

dNt
T
e∑

k=1

ξ
∗,(N)
k , Y

(N)
t := Y0 −

dNt
T
e∑

k=1

η
∗,(N)
k , t ≥ 0. (14)

In the case X0 = −Y0, we have X(N) = −Y (N) = X0W
(N), where

W
(N)
t = 1−

dNt
T
e∑

k=1

w
(N)
k , t ≥ 0. (15)

Proposition 2.12. When θ > 0, we have for t < T

lim
N↑∞

W
(N)
t =

ρ(T − t) + 1

ρT + 1
(16)

and Wt = 0 for t > T .

Note that the limiting function in (16) is independent of θ as long as θ > 0. Let

V
(N)
t = 1−

dNt
T
e∑

k=1

v
(N)
k , t ≥ 0. (17)

The asymptotic analysis for V (N) is much more difficult than for W (N) and, at this time, we are
not able to prove any quantitative results. But the numerical simulation in Figure 6 suggests
that V (N) converges for θ ≥ θ∗ to a function V (∞), which has a jump at t = 0 and is otherwise a
nonlinear function of time.
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Figure 6: The function V (N) for N = 1000 with parameters θ = 0.5 and λ = ρ = 1.

3 Proofs

3.1 Proof of Theorem 2.6

Lemma 3.1. The expected costs of an admissible strategy ξ ∈X (X0,T) given another admissible
strategy η ∈X (Y0,T) are

E[ CT(ξ|η) ] = E
[ 1

2
ξ>Γθξ + ξ>Γ̃η

]
. (18)

Proof. Since the sequence (εi)i=0,1,... is independent of σ(
⋃
t≥0 Ft) and the two strategies ξ and η

are measurable with respect to this σ-field, we get E[ εkξkηk ] = 1
2
E[ ξkηk ]. Hence,

E[ CT(ξ|η) ]−X0S
0
0 = E

[ N∑
k=0

(1

2
ξ2k − S

ξ,η
tk
ξk + εkξkηk + θξ2k

)]

= E
[ N∑

k=0

(
1

2
ξ2k +

1

2
ξkηk − ξk

(
S0
tk
−

k−1∑
m=0

(ξm + ηm)G(tk − tm)
)

+ θξ2k

)]

= E
[
−

N∑
k=0

ξkS
0
tk

+
1

2

N∑
k=0

ξ2k +
N∑
k=0

ξk

k−1∑
m=0

ξmG(tk − tm)

+
N∑
k=0

(
ξk

(1

2
ηk +

k−1∑
m=0

ηmG(tk − tm)
)

+ θξ2k

)]
.

Since each ξk is Ftk-measurable and S0 is a martingale, we get from condition (b) in Definition
2.1 that

E
[ N∑
k=0

ξkS
0
tk

]
= E

[ N∑
k=0

ξkS
0
T

]
= X0E[S0

T ] = X0S
0
0 .

14



Moreover,

1

2

N∑
k=0

ξ2k +
N∑
k=0

ξk

k−1∑
m=0

ξmG(tk − tm) =
1

2

N∑
k,m=0

ξkξmG(|tk − tm|) =
1

2
ξ>Γξ,

and
N∑
k=0

ξk

(1

2
ηk +

k−1∑
m=0

ηmG(tk − tm)
)

= ξ>Γ̃η.

Putting everything together yields the assertion.

We will use the convention of saying that an n×n-matrix A is positive definite when x>Ax > 0
for all nonzero x ∈ Rn, even when A is not necessarily symmetric. Clearly, for a positive definite
matrix A there is no nonzero x ∈ Rn for which Ax = 0, and so A is invertible. Moreover, writing a
given nonzero x ∈ Rn as x = Ay for y = A−1x 6= 0, we see that x>A−1x = y>A>y = y>Ay > 0.
So the inverse of a positive definite matrix is also positive definite. Recall that we assume (2)
throughout this paper.

Lemma 3.2. The matrices Γθ, Γ̃, Γθ + Γ̃, Γθ− Γ̃ are positive definite for all θ ≥ 0. In particular,
all terms in (7) are well-defined and the denominators in (7) are strictly positive.

Proof. That Γ is positive definite follows directly from (2). Therefore, for nonzero x ∈ RN+1,

0 < x>Γx = x>(Γ̃ + Γ̃>)x = x>Γ̃x+ x>Γ̃>x = 2x>Γ̃x,

which shows that the matrix Γ̃ is positive definite. Next, Γ − Γ̃ = Γ̃> and so this matrix is also
positive definite. Clearly, the sum of two positive definite matrices is also positive definite, which
shows that Γθ + Γ̃ = Γ + Γ̃ + 2θ Id and Γθ − Γ̃ = Γ− Γ̃ + 2θ Id are positive definite for θ ≥ 0.

Lemma 3.3. For given time grid T and initial values X0 and Y0, there exists at most one Nash
equilibrium in the class X (X0,T)×X (Y0,T).

Proof. We assume by way of contradiction that there exist two distinct Nash equilibria (ξ0,η0)
and (ξ1,η1) in X (X0,T) ×X (Y0,T). Here, the fact that the two Nash equilibria are distinct
means that they are not P-a.s. equal. Then we define for α ∈ [0, 1]

ξα := αξ1 + (1− α)ξ0 and ηα := αη1 + (1− α)η0.

We furthermore let

f(α) := E
[
CT(ξα|η0) + CT(ηα|ξ0) + CT(ξ1−α|η1) + CT(η1−α|ξ1)

]
.

Since according to Lemma 3.2 the matrix Γθ is positive definite, the functional

ξ 7−→ E[ CT(ξ|η) ] = E
[ 1

2
ξ>Γθξ + ξ>Γ̃η

]
is strictly convex with respect to ξ. Since the two Nash equilibria (ξ0,η0) and (ξ1,η1) are distinct,
f(α) must also be strictly convex in α and have its unique minimum in α = 0. That is,

f(α) > f(0) for α > 0. (19)
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It follows that

lim
h↓0

f(h)− f(0)

h
=
df(α)

dα

∣∣∣
α=0+

≥ 0. (20)

Next, by the symmetry of Γθ,

E[ CT(ξα|η) ] = E
[

1

2
α2(ξ1)>Γθξ

1 + α(1− α)(ξ1)>Γθξ
0 +

1

2
(1− α)2(ξ0)>Γθξ

0

+α(ξ1)>Γ̃η + (1− α)(ξ0)>Γ̃η

]
.

Therefore,
d

dα

∣∣∣
α=0+

E[ CT(ξα|η) ] = E
[

(ξ1 − ξ0)>Γθξ
0 + (ξ1 − ξ0)>Γ̃η

]
.

Hence, it follows that

d

dα

∣∣∣
α=0+

f(α)

= E
[
(ξ1 − ξ0)>Γθξ

0 + (ξ1 − ξ0)>Γ̃η0 + (ξ0 − ξ1)>Γθξ
1 + (ξ0 − ξ1)>Γ̃η1

+(η1 − η0)>Γθη
0 + (η1 − η0)>Γ̃ξ0 + (η0 − η1)>Γθη

1 + (η0 − η1)>Γ̃ξ1
]

= −E
[
(ξ1 − ξ0)>Γθ(ξ

1 − ξ0) + (η1 − η0)>Γθ(η
1 − η0)

]
+E
[
(ξ1 − ξ0)>Γ̃(η0 − η1) + (ξ1 − ξ0)>Γ̃>(η0 − η1)

]
= −E

[
(ξ1 − ξ0)>Γθ(ξ

1 − ξ0) + (η1 − η0)>Γθ(η
1 − η0)

]
− E

[
(ξ1 − ξ0)>Γ(η1 − η0)

]
.

Now,

(ξ1 − ξ0)>Γ(η1 − η0) +
1

2

(
(ξ1 − ξ0)>Γθ(ξ

1 − ξ0) + (η1 − η0)>Γθ(η
1 − η0)

)
≥ 1

2

(
(ξ1 − ξ0 + η1 − η0)>Γ(ξ1 − ξ0 + η1 − η0)

)
≥ 0.

Thus, and because the two Nash equilibria (ξ0,η0) and (ξ1,η1) are distinct, we have

d

dα

∣∣∣
α=0+

f(α) ≤ −1

2
E
[
(ξ1 − ξ0)>Γ(ξ1 − ξ0) + (η1 − η0)>Γ(η1 − η0)

]
< 0,

which contradicts (20). Therefore, there can exist at most one Nash equilibrium in the class
X (X0,T)×X (Y0,T).

Now let us introduce the class

Xdet(Z0,T) :=
{
ζ ∈X (Z0,T)

∣∣∣ ζ is deterministic
}

of deterministic strategies in X (Z0,T). A Nash equilibrium in the class Xdet(X0,T)×Xdet(Y0,T)
is defined in the same way as in Definition 2.5.
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Lemma 3.4. A Nash equilibrium in the class Xdet(X0,T)×Xdet(Y0,T) of deterministic strategies
is also a Nash equilibrium in the class X (X0,T)×X (Y0,T) of adapted strategies.

Proof. Assume that (ξ∗,η∗) is a Nash equilibrium in the class Xdet(X0,T) × Xdet(Y0,T) of
deterministic strategies. We need to show that ξ∗ minimizes E[ CT(ξ|η∗) ] and η∗ minimizes
E[ CT(η|ξ∗) ] in the respective classes X (X0,T) and X (Y0,T) of adapted strategies. To this end,
let ξ ∈X (X0,T) be given. We define ξ ∈Xdet(X0,T) by ξk = E[ ξk ] for k = 0, 1, . . . , N .

Applying Jensen’s inequality to the convex function RN+1 3 x 7→ x>Γθx, we obtain

E[ CT(ξ|η∗) ] = E
[1

2
ξ>Γθξ + ξ>Γ̃η∗

]
= E

[1

2
ξ>Γθξ

]
+ ξ

>
Γ̃η∗

≥ 1

2
ξ
>

Γθξ + ξ
>

Γ̃η∗ = E[ CT(ξ|η∗) ]

≥ E[ CT(ξ∗|η∗) ].

This shows that ξ∗ minimizes E[ CT(ξ|η∗) ] over ξ ∈ X (X0,T). One can show analogously that
η∗ minimizes E[ CT(η|ξ∗) ] over η ∈X (Y0,T), which completes the proof.

Remark 3.5. Before proving Theorem 2.6, we briefly explain how to derive heuristically the
explicit form (8) of the equilibrium strategies. By Lemma 3.1 and the method of Lagrange
multipliers, a necessary condition for (ξ∗,η∗) to be a Nash equilibrium in Xdet(X0,T)×Xdet(Y0,T)
is the existence of α, β ∈ R, such that {

Γθξ
∗ + Γ̃η∗ = α1;

Γθη
∗ + Γ̃ξ∗ = β1.

(21)

By adding the equations in (21) we obtain

(Γθ + Γ̃)(ξ∗ + η∗) = (α + β)1. (22)

By Lemma 3.2, the matrix Γθ + Γ̃ is positive definite and hence invertible, so that (22) can be
solved for ξ∗ + η∗. Since we must also have 1>(ξ∗ + η∗) = X0 + Y0, we obtain

ξ∗ + η∗ =
(X0 + Y0)

1>(Γθ + Γ̃)−11
(Γθ + Γ̃)−11 = (X0 + Y0)v.

Similarly, by subtracting the two equations in (21) yields

(Γθ − Γ̃)(ξ∗ − η∗) = (α− β)1.

It follows again from Lemma 3.2 that (Γθ − Γ̃) is invertible, and so we have

ξ∗ − η∗ =
(X0 − Y0)

1T (Γθ − Γ̃)−11
(Γθ − Γ̃)−11 = (X0 − Y0)w.

Thus, ξ∗ and η∗ ought to be given by (8).
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Proof of Theorem 2.6. By Lemmas 3.3 and 3.4 all we need to show is that (8) defines a Nash equi-
librium in the class Xdet(X0,T)×Xdet(Y0,T) of deterministic strategies. For (ξ,η) ∈Xdet(X0,T)×
Xdet(Y0,T) we have

E[ CT(ξ|η) ] =
1

2
ξ>Γθξ + ξ>Γ̃η. (23)

Therefore minimizing E[ CT(ξ|η) ] over ξ ∈ Xdet(X0,T) is equivalent to the minimization of the
quadratic form on the right-hand side of (23) over ξ ∈ RN+1 under the constraint 1>ξ = X0.

Now we prove that the strategies ξ∗ and η∗ given by (8) are indeed optimal. We have

Γθξ
∗ + Γ̃η∗ =

1

2
(X0 + Y0)(Γθ + Γ̃)v +

1

2
(X0 − Y0)(Γθ − Γ̃)w = µ1, (24)

where

µ =
(X0 + Y0)

21>(Γθ + Γ̃)1
+

(X0 − Y0)
21>(Γθ − Γ̃)1

.

Now let ξ ∈ Xdet(X0,T) be arbitrary and define ζ := ξ − ξ∗. Then we have ζ>1 = 0. Hence, by
the symmetry of Γθ,

1

2
ξ>Γθξ + ξ>Γ̃η∗ =

1

2
(ξ∗)>Γθξ

∗ +
1

2
ζ>Γθζ + ζ>Γθξ

∗ + (ξ∗)>Γ̃η∗ + ζ>Γ̃η∗

=
1

2
(ξ∗)>Γθξ

∗ + (ξ∗)>Γ̃η∗ +
1

2
ζ>Γθζ + µζ>1

≥ 1

2
(ξ∗)>Γθξ

∗ + (ξ∗)>Γ̃η∗,

where in the last step we have used that Γθ is positive definite and that ζ>1 = 0. Therefore ξ∗

minimizes (23) in the class Xdet(X0,T) for η = η∗. In the same way, one shows that η∗ minimizes
E[ CT(η|ξ∗) ] over η ∈Xdet(X0,T).

3.2 Proof of Propositions 2.7, 2.11, and 2.12

Recall that in this section G(t) = γ + λe−ρt for constants λ, ρ > 0 and γ ≥ 0.

Proof of Proposition 2.7. We need to compute the inverse of the matrix Γθ − Γ̃. Setting κ :=
2θ/λ+ 1

2
and a := e−ρT , we have

Γθ − Γ̃ = λ



κ a
1
N a

2
N · · · a

N−1
N a

0 κ a
1
N · · · a

N−2
N a

N−1
N

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . κ a

1
N

0 · · · · · · · · · 0 κ


.
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It is easy to verify that the inverse of this matrix is given by

ΠN :=
1

λ



1
κ

−a
1
N

κ2
−a

2
N (κ−1)
κ3

· · · −a
N−1
N (κ−1)N−2

κN
−a

N
N (κ−1)N−1

κN+1

0 1
κ

−a
1
N

κ2
· · · −a

N−2
N (κ−1)N−3

κN−1

−a
N−1
N (κ−1)N−2

κN

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . 1

κ
−a

1
N

κ2

0 · · · · · · · · · 0 1
κ


. (25)

Let us denote by u = (u1, u2, . . . , uN+1) ∈ RN+1 the vector λΠN1. Then we have uN+1 = 1
κ

and,
for n = 1, . . . , N , un = un+1 − a(N+1−n)/N(κ− 1)N−n/κN+2−n. That is,

un =
1

κ
− a

1
N

κ2

N∑
m=n

(a 1
N (κ− 1)

κ

)N−m
=

1

κ
− a

1
N

κ2

N−n∑
k=0

(a 1
N (κ− 1)

κ

)k
=

1

κ

[
1− a

1
N

κ(1− a 1
N ) + a

1
N

+ (−1)N+1−n a
1
N

κ(1− a 1
N ) + a

1
N

(a 1
N (1− κ)

κ

)N+1−n
]
.

(26)

When θ = 0, we have

un = 2

[
1− 2a

1
N

1 + a
1
N

+ (−1)N+1−n2a
N+2−n

N

1 + a
1
N

]
. (27)

Since a < 1, we have

0 ≤ 1− 2a
1
N

1 + a
1
N

< 1− a
1
N −→ 0 as N ↑ ∞.

On the other hand, we have

2a
N+2−n

N

1 + a
1
N

≥ a
N+2−n

N ≥ a
N+1
N −→ a as N ↑ ∞.

Therefore, the signs of un will alternate as soon as N is large enough to have 1 − a
1
N < a

N+1
N .

This proves part (a). As for part (b), since the expression (26) is continuous in κ, the signs of un
will still alternate if, for fixed N ≥ N0, we take κ slightly larger than 1/2. (Note however that

the term (1− κ)N/κN tends to zero faster than 1− a 1
N , so we cannot get this result uniformly in

N).

Lemma 3.6. Let ΠN be as in (25) and let us denote by u(N) = (u
(N)
1 , u

(N)
2 , . . . , u

(N)
N+1) ∈ RN+1 the

vector λΠN1. When n ∈ {1, . . . , N + 1}, then

n∑
m=1

u(N)
m =

1

κ

[
n

(
1− a

1
N

κ(1− a 1
N ) + a

1
N

)
+

a
1
N

κ(1− a 1
N ) + a

1
N

(a 1
N (κ− 1)

κ

)N+1−n
(a 1

N (κ−1)
κ

)n − 1

a
1
N (κ−1)
κ

− 1

]
.
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Proof. The assertion follows from (26) by noting that

n∑
m=1

(a 1
N (κ− 1)

κ

)N+1−m
=
(a 1

N (κ− 1)

κ

)N+1−n
(
a

1
N (κ−1)
κ

)n − 1

a
1
N (κ−1)
κ

− 1
.

Proof of Proposition 2.11. Let ΠN and u(N) be as in Lemma 3.6. We need to normalize the vector
u(N) with 1>λΠN1 = 1>u(N) to get w(N). Taking n = N + 1 in Lemma 3.6 yields

1>λΠN1 =
N+1∑
n=1

u(N)
n

=
1

κ

[
(N + 1)

(
1− a

1
N

κ(1− a 1
N ) + a

1
N

)
+

a
1
N

κ(1− a 1
N ) + a

1
N

·
(a 1

N (κ−1)
κ

)N+1 − 1

a
1
N (κ−1)
κ

− 1

]
.

Note that

(N + 1)

(
1− a

1
N

κ(1− a 1
N ) + a

1
N

)
−→ −κ log a = κρT as N ↑ ∞. (28)

Moreover, κ ≥ 1/2 implies that |κ− 1|/κ ≤ 1 with equality if and only if κ = 1/2. We therefore
get that for κ = 1/2, which is the same as θ = 0,

lim
N↑∞

1>λΠ2N1 = ρT +
1 + a

2κ
= ρT + a+ 1,

lim
N↑∞

1>λΠ2N+11 = ρT +
1− a

2κ
= ρT − a+ 1.

(29)

For κ > 1/2, we have
lim
N↑∞

1>λΠN1 = ρT + 1. (30)

The assertions now follow easily by taking limits in (27) and (26).

Proof of Proposition 2.12. Let nt := dNt/T e. Then, with the notation introduced in the proof of
Proposition 2.11,

W
(N)
t = 1− 1

1>λΠN1

nt∑
k=1

u
(N)
k .

For θ > 0 and t < T it follows from Lemma 3.6 that(a 1
N (κ− 1)

κ

)N+1−nt

−→ 0 as N ↑ ∞.

Therefore, with (28),

lim
N↑∞

nt∑
k=1

u
(N)
k =

1

κ
lim
N↑∞

nt

(
1− a

1
N

κ(1− a 1
N ) + a

1
N

)
= ρt.

The assertion now follows with (30).
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3.3 Proof of Theorem 2.8

Ours proof relies on results for so-called M -matrices stated in the book [5] by Berman and Plem-
mons. We first introduce some notations. When A is a matrix or vector, we will write

(a) A ≥ 0 if each entry of A is nonnegative;

(b) A > 0 if A ≥ 0 and at least one entry is strictly positive;

(c) A� 0 if each entry of A is strictly positive.

Definition 3.7 (Definition 1.2 in Chapter 6 of [5]). A matrix A ∈ Rn×n is called a nonsingular
M-matrix if it is of the form A = s Id − B, where the matrix B ∈ Rn×n satisfies B ≥ 0 and the
parameter s > 0 is strictly larger than the spectral radius of B.

Also recall that a matrix A ∈ Rn×n is called a Z-matrix if all its off-diagonal elements are
nonpositive. Berman and Plemmons [5] give 50 equivalent characterizations of the fact that a
given Z-matrix is a nonsingular M -matrix. We will need three of them here and summarize them
in the following statement.

Theorem 3.8 (From Theorem 2.3 in Chapter 6 of [5]). For a Z-matrix A ∈ Rn×n, the following
conditions are equivalent.

(a) A is a nonsingular M-matrix;

(b) All the leading principal minors of A are positive.

(c) A is inverse-positive; that is, A−1 exists and A−1 ≥ 0.

(d) A+ α Id is nonsingular for all α ≥ 0.

We start with the following auxiliary lemma.

Lemma 3.9. A triangular Z-matrix A ∈ Rn×n with positive diagonal is an M-matrix.

Proof. Let

A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

. . . . . .
...

0 · · · · · · ann


be an upper triangular Z-matrix with positive diagonal. Then all of its leading principle minors
are positive:

A[k] =
k∏
i=1

aii > 0, for k ∈ 1, 2, . . . , N.

By Theorem 3.8 (b), A is an M -matrix.
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It will be convenient to define the matrices

Φij := e−ρ|ti−1−tj−1| and Ψij := 1 (31)

for i, j = 1, . . . , N + 1. Recalling that G(t) = λe−ρt + γ, we then have Γ = λΦ + γΨ and
Γθ = λΦ + γΨ + 2θ Id. Moreover, for any matrix A we let

Ãij :=


Aij if i > j,
1
2
Aij if i = j,

0 otherwise.

Note that this notation is consistent with (6), and we get Γ̃ = λΦ̃ + γΦ̃. We finally define

Φ̂ := Φ̃ +
1

2
Id.

Lemma 3.10. For α ≥ 0, the inverse of the matrix Φ̂ + αΦ is given by

β −a
1
N µβ2 −a

2
N µβ3 · · · −a

N−1
N µβN − aα

1+αβ
N

−a
1
N β (1 + (1− a

4
N )α)β2 −a

1
N µνβ3 · · · −a

N−2
N µνβN −a

N−1
N µβN

0 −a
1
N β (1 + (1− a

4
N )α)β2 · · · −a

N−3
N µνβN−1 −a

N−2
N µβN−1

0 0
. . .

. . .
...

...
...

. . .
. . . −a

1
N β (1 + (1− a

4
N )α)β2 −a

1
N µβ2

0 · · · · · · 0 −a
1
N β β


,

where
β =

(
1 + (1− a

2
N )α

)−1
, µ = (1− a

2
N )α, ν = (1− a

2
N )(1 + α).

Proof. Let the matrix in the statement be denoted by P . We rewrite P as

Pij =



β, if i = j = 1 or i = j = N + 1;

(1 + (1− a 4
N )α)β2, if i = j ∈ {2, . . . , N};

−a 1
N β, if i− j = 1;

−a j−i
N βj−i+2µν, if j − i ∈ {1, . . . , N − 2} and i 6= 1 and j 6= N + 1;

−a j−i
N βj−i+1µ, if j − i ∈ {1, . . . , N − 1} and either i = 1 or j = N + 1;

− aα
1+α

βN , if i = 1 and j = N + 1,

0, if i ≥ j + 2.

On the other hand, the matrix Φ̂ + αΦ can be written as

(Φ̂ + αΦ)ij =


1 + α, if i = j;

αa
j−i
N , if i < j;

(1 + α)a
i−j
N , if i > j.

Checking
N+1∑
k=1

Pik(Φ̂ + αΦ)kj =
N+1∑
k=1

(Φ̂ + αΦ)ikPkj = δij

for all i and j completes the proof.
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Let

Ψ̂ := Ψ̃> − 1

2
Id.

Lemma 3.11. The matrix Φ−1
(
Φ̂− γ

λ
Ψ̂
)

is a Z-matrix and a nonsingular M-matrix.

Proof. It was shown in [1, Theorem 3.4] that

Φ−1 =
1

1− a 2
N



1 −a 1
N 0 · · · · · · 0

−a 1
N 1 + a

2
N −a 1

N 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . −a 1

N 1 + a
2
N −a 1

N

0 · · · · · · 0 −a 1
N 1


. (32)

The matrix Φ̂− γ
λ
Ψ̂ is equal to

1 −γ
λ
−γ
λ
· · · · · · −γ

λ

a
1
N 1 −γ

λ
· · · · · · −γ

λ

a
2
N

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . a
1
N 1 −γ

λ

a · · · · · · a
2
N a

1
N 1


.

A straightforward computation now yields that the matrix (1− a 2
N )Φ−1

(
Φ̂− γ

λ
Ψ̂
)

is equal to

1 − a
2
N −a

1
N − γ

λ
−(1 − a

1
N ) γ

λ
−(1 − a

1
N ) γ

λ
· · · −(1 − a

1
N ) γ

λ

0 1 + a
1
N γ
λ

−a
1
N − (1 − a

1
N + a

2
N ) γ

λ
−(1 − a

1
N )2 γ

λ
· · · −(1 − a

1
N )2 γ

λ

0 0 1 + a
1
N γ
λ

−a
1
N − (1 − a

1
N + a

2
N ) γ

λ
· · · −(1 − a

1
N )2 γ

λ

0
.
. .

.
. .

.
. .

.
. .

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
. .
.

. .
.

. .
.

. .
. −(1 − a

1
N )2 γ

λ

.

.

.
.
.
.

.
.
. 0 1 + a

1
N γ
λ

−a
1
N − (1 − a

1
N + a

2
N ) γ

λ

0 · · · · · · 0 0 1 + a
1
N γ
λ


,

which is an upper triangular Z-matrix with positive diagonal. By Lemma 3.9, Φ−1
(
Φ̂ − γ

λ
Ψ̂
)

is
hence a nonsingular M -matrix.

Lemma 3.12. For δ ≥ 0 the matrix Λδ := Φ−1
(
Φ̂− γ

λ
Ψ̂
)

+ δΦ−1 is a nonsingular M-matrix.

Proof. For δ = 0 the result follows from Lemma 3.11. So let us assume henceforth that δ > 0.
Note first that Λδ is a Z-matrix since both Φ−1

(
Φ̂− γ

λ
Ψ̂
)

and Φ−1 are Z matrices by Lemma 3.11
and (32), respectively. Hence condition (d) of Theorem 3.8 will imply that Λδ is a nonsingular
M -matrix as soon as we can show that Λδ + α Id is invertible for all α ≥ 0.

23



In a first step, we note that taking γ = 0 in Lemma 3.11 yields that Φ−1Φ̂ is a nonsingular
M -matrix. Hence (α Id + Φ−1Φ̂)−1 ≥ 0 for all α ≥ 0. It follows that(

Φ̂ + αΦ
)−1

1 =
(

Id + (αΦ)−1Φ̂
)−1

(αΦ)−11 =
(
α Id + Φ−1Φ̂

)−1
Φ−11 > 0,

because by [1, Example 3.5],

Φ−11 =
1

1 + a
1
N

(
1, 1− a

1
N , . . . , 1− a

1
N , 1

)T
� 0. (33)

Since moreover (Φ̂+αΦ)−1 is a Z-matrix by Lemma 3.10, it follows that (Φ̂+αΦ)−1 is a diagonally
dominant Z-matrix for all α ≥ 0.

In the next step, we show that the matrix

Q := (Φ̂ + αΦ)−1
(
δ Id− γ

λ
Ψ̂
)

is a Z-matrix. Denoting again P := (Φ̂ + αΦ)−1, we get

Qij = δPij −
γ

λ

j−1∑
k=1

Pik,

with the convention that
∑0

k=1 ak = 0. It follows that Qii ≥ 0 for all i, because Pii ≥ 0 and
γ
λ

∑i−1
k=1 Pik ≤ 0 by the fact that P is a Z-matrix. Since P is diagonally dominant, we have∑j−1

k=1 Pik ≥ 0 for any j > i and hence Qij = δPij − γ
λ

∑j−1
k=1 Pik ≤ 0 for j > i. Using the fact that

Pik = 0 for k ≤ i− 1, we get that for j < i

Qij = δPij −
γ

λ

j−1∑
k=1

Pik = δPij ≤ 0.

This shows that Q is a Z-matrix.
We show next that Q is a nonsingular M -matrix. To this end, we note first that the triangular

matrix
(
δ Id − γ

λ
Ψ̂
)

is invertible under our assumption δ > 0. As a matter of fact, an easy

calculation verifies that its inverse is given by

1

δ



1 σ σ(1 + σ) · · · σ(1 + σ)N−2 σ(1 + σ)N−1

0 1 σ σ(1 + σ) · · · σ(1 + σ)N−2

0 0 1 σ · · · σ(1 + σ)N−3

0
. . . . . . . . . . . .

...
...

. . . . . . . . . 1 σ
0 · · · · · · · · · 0 1


≥ 0,

where σ := γ
λδ
> 0. Hence,

Q−1 =
(
δ Id− γ

λ
Ψ̂
)−1

(Φ̂ + αΦ) ≥ 0.
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So Theorem 3.8 (c) shows that Q is a nonsingular M -matrix.
For the final step, we note first that Theorem 3.8 (d) implies that Id + Q is a nonsingular

M -matrix. In particular, ( Id +Q)−1 exists, and so we can define the matrix

( Id +Q)−1(Φ̂ + αΦ)−1Φ =
(
δ Id + Φ̂ + αΦ− γ

λ
Ψ̂
)−1

Φ

=
(

Id + (δΦ−1)−1
(

Φ−1
(

Φ̂− γ

λ
Ψ̂
)

+ α Id
))−1

(δΦ−1)−1

=
(
δΦ−1 + Φ−1

(
Φ̂− γ

λ
Ψ̂
)

+ α Id
)−1

= (Λδ + α Id)−1.

This proves that Λδ + α Id is invertible and the proof is complete.

Lemma 3.13. Let A be an invertible matrix and suppose that α ∈ R is such that A + αΨ is
invertible. Then the vector A−11 is proportional to (A+ αΨ)−11.

Proof. Note that Ψx is proportional to 1 for any vector x. Hence,

(A+ αΨ)A−11 = ( Id + αΨA−1)1 = (1 + β)1

for some constant β. Applying (A+ αΨ)−1 to both sides of this equation yields the result.

We are now ready to prove Theorem 2.8. We will first prove that (c)⇔(a). Then we will show
(c)⇔(b).

Proof of (c)⇒(a) in Theorem 2.8. We need to show that v has only nonnegative components for

θ ≥ λ+γ
4

. The vector v is proportional to (Γθ + Γ̃)−11. When setting

δ :=
4θ − (λ+ γ)

2λ
≥ 0,

we find that

Γθ + Γ̃− γΨ = λΦ + γΨ + 2θ Id + λΦ̃ + γΨ̃− γΨ

= λΦ + 2θ Id + λΦ̃− γΨ̃> = λΦ + λ
(

Φ̂− γ

λ
Ψ̂ + δ Id

)
= λΦ

(
Λδ + Id

)
,

and we know from Lemma 3.12 that the latter matrix is invertible. It therefore follows from
Lemma 3.13 that v is proportional to(

Φ(Λδ + Id)
)−1

1 = (Λδ + Id)−1Φ−11.

As noted in (33), we have Φ−11 � 0. Moreover, Λδ, and hence Λδ + Id, are nonsingular M -
matrices by Lemma 3.12 and Theorem 3.8 (d). Via Theorem 3.8 (c), these facts imply that(
Φ(Λδ + Id)

)−1
1 ≥ 0 and in turn that v ≥ 0.
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Proof of (a)⇒(c) in Theorem 2.8. We consider the case N = 1. By definition, v is proportional
to the vector

2 det(Γθ + Γ̃)(Γθ + Γ̃)−11 =

(
λ(3− 2a) + γ + 4θ
λ(3− 4a)− γ + 4θ

)
.

Clearly, the first component of this vector is positive for all a ∈ (0, 1) and θ ≥ 0. By sending a ↑ 1
one sees, however, that the second component is negative for θ < θ∗ and a sufficiently close to 1.
Thus, we cannot have v ≥ 0 in this case.

Proof of (c)⇒(b) in Theorem 2.8. We assume that θ ≥ θ∗. Note that

(
Ψ̃> +

1

2
Id
)−1

=



1 1 1 · · · 1 1
0 1 1 · · · 1 1

0
. . . . . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . 1 1
0 · · · · · · · · · 0 1



−1

=



1 −1 0 · · · 0 0
0 1 −1 0 · · · 0

0
. . . . . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . 1 −1
0 · · · · · · · · · 0 1


.

Letting κ := 1
2

+ 2θ
λ
− γ

2λ
, it follows that

γ

λ

(
γΨ̃> +

γ

2
Id
)−1(

λΦ̃> +
(

2θ − γ

2

)
Id
)

=
(

Ψ̃> +
1

2
Id
)−1(

Φ̃> +
(
κ− 1

2

)
Id
)

=



1 −1 0 · · · 0 0
0 1 −1 0 · · · 0

0
. . . . . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . 1 −1
0 · · · · · · · · · 0 1





κ a
1
N a

2
N · · · a

N−1
N a

0 κ a
1
N · · · a

N−2
N a

N−1
N

0
. . . . . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . κ a
1
N

0 · · · · · · · · · 0 κ


.

A straightforward computation yields that the preceding matrix product is equal to

κ a
1
N − κ (a

1
N − 1)a

1
N · · · (a

1
N − 1)a

N−2
N (a

1
N − 1)a

N−1
N

0 κ a
1
N − κ (a

1
N − 1)a

1
N · · · (a

1
N − 1)a

N−2
N

0
. . . . . . . . . . . .

...

0
. . . . . . . . . . . . (a

1
N − 1)a

1
N

...
. . . . . . . . . κ a

1
N − κ

0 · · · · · · · · · 0 κ


.

We have θ ≥ θ∗ if and only if κ ≥ 1. Therefore and since a
1
N < 1 for all N ∈ N, the preceding is

a Z-matrix. By Lemma 3.9, it is an M -matrix. Therefore, by Theorem 3.8, also the matrix

A := Id +
(
γΨ̃> +

γ

2
Id
)−1(

λΦ̃> +
(

2θ − γ

2

)
Id
)
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is an M -matrix.
We have (

γΨ̃> +
γ

2
Id
)
A = γΨ̃> + λΦ̃> + 2θ Id = λΦ− λΦ̃− γΨ̃ + 2θ Id + γΨ

= Γθ − Γ̃ + γΨ̃>.

It follows that the latter matrix is invertible. An application of Lemma 3.13 therefore yields that
w is proportional to the vector(

Γθ − Γ̃ + γΨ̃>
)−1

1 = A−1
(
γΨ̃> +

γ

2
Id
)−1

1 =
1

γ
A−1(0, 0, . . . , 0, 1)>,

where we have used the formula for (Ψ̃> + 1
2

Id)−1 given in the beginning of this proof. Since
A is a nonsingular M -matrix, and thus inverse-positive by Theorem 3.8 (c), we conclude that
A−1(0, 0, . . . , 0, 1)>, and in turn w, have only nonnegative components.

Proof of (b)⇒(c) in Theorem 2.8. We assume N = 1. By definition, w is proportional to the
vector

det(Γθ − Γ̃)(Γθ − Γ̃)−11 =

(
−0.5γ + 2θ + (0.5− a)λ

0.5(γ + λ) + 2θ

)
.

Clearly, the second component of this vector is positive for all a ∈ (0, 1) and θ ≥ 0. By sending
a ↑ 1 one sees, however, that the first component is negative for θ < θ∗ and a sufficiently close to
1. Thus, we cannot have w ≥ 0 in this case.

4 Conclusion and outlook

We have considered a Nash equilibrium for two competing agents in a market impact model with
general transient price impact. We have seen that without transaction costs both agents engage
in a “hot-potato game”, which has some similarities to certain events during the Flash Crash that
have been reported in [10, 15]. We have then analyzed the behavior of equilibrium strategies as
functions of transaction costs, θ, and trading frequency, N . In Theorem 2.8 we have determined
the critical value of transaction costs at which the equilibrium strategies v and v become buy-only
or sell-only. In Section 2.4, numerical simulations have shown that expected costs can be increasing
in the trading frequency for small θ, while they generally decrease for sufficiently large θ. We have
also seen that the expected costs of both agents can be lower with additional transaction costs
than without. These observations provide some support for the common claim that additional
transaction costs (such as a small tax or an extra spread) can, at least under certain circumstances
such as during a fire sale, have a calming effect on financial markets.

In future work, we will try to provide mathematical proofs for the numerical observations in
Section 2.4. These proofs will be based on a more detailed analysis of the high-frequency limit
discussed in Section 2.5.

Acknowledgement: The authors thank Ria Grindel, Elias Strehle for comments that helped to
improve a previous version of the manuscript.
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[22] T. Schöneborn and A. Schied. Liquidation in the face of adversity: stealth vs. sunshine
trading. SSRN Preprint 1007014, 2009.

29


